Информационные технологии управления


         

периодичность обновления, т. е. не


  • периодичность обновления, т. е. не только когда были обновлены данные, но и когда они будут вновь обновляться;


  • собственников данных, чтобы определить, какие шаги пользователь должен предпринять для доступа к этим данным;


  • статистическую оценку запросов, оценку времени и объема полученного ответа.


  • Собрав информацию об истории развития организации, ее успехах и неудачах, причинах этих неудач, взаимоотношениях с поставщиками и заказчиками, истории и развитии рынка, менеджеры получают уникальную возможность для анализа прошлого, текущей ситуации и составления обоснованных прогнозов. Но возникает четвертая проблема - проблема защиты информации. Региональный менеджер должен иметь информацию по региону, а менеджер подразделения - по подразделению.

    Последняя проблема, о которой следует упомянуть, — это проблема больших объемов хранилищ. В настоящее время 50% организаций уже планируют объем хранилищ в 100 гигабайт. Средний коэффициент, на который нужно умножать эту цифру для расчета реально необходимого объема хранилища, равен 4,87, но он может быть разным в зависимости от вида информации.

    Создание единых хранилищ данных предполагает использование технологий статистической обработки информации для ее предварительного анализа, определения состава и структуры тематических рубрик. Начальный этап предварительного анализа - выделение групп с однородными данными и расчленение информации на однокачественные интервалы, т. е. группировка по типу информации.

    Если существующие в настоящее время технологии анализа данных в хранилищах распределить по увеличению аналитических возможностей; то список будет выглядеть так: Online Transaction Processing (OLTP); Online Analytical Processing (OLAP); Data Mining. Технология оперативного анализа распределенных данных (ОLAР-технология), занимающая среднее положение в этом списке, наиболее распространена. Эта технология обеспечивает:

    • построение многомерных моделей баз данных;


    • иерархическое представление информации по семантическим связям;


    • выполнение сложных аналитических расчетов;



    • Содержание  Назад  Вперед